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CHAPTER 1 

INTRODUCTION 

1.1 Neutrophils 

The human body is prone to attacks from a host of pathogens and underlying all 

bodily defense is a strong immune response. As a result, immune systems are under a 

constant state of surveillance and pathogen elimination. Immune cells must act fast and 

efficiently to combat illness and circulating neutrophils represent the body’s first line of 

defense. Neutrophils are the most abundant inflammatory cell type and account for 60-

70% of white blood cells in circulation (5x109 cells per liter) [3]. In the early stages of 

acute inflammation neutrophils are recruited in great numbers to initiate an immune 

response. They are short lived, averaging a 4-5 day lifespan and once they complete 

their immunological duties are recycled by host macrophages [4]. 

Neutrophils play a vital role in host defense, and once stimulated, change from a 

relatively unanimated circulatory state to an aggressively invading immune cell. As 

neutrophils circulate through blood vessels they may encounter inflammatory signals 

attached to endothelial cells by heparin sulfates [5]. These signals activate receptors on 

the neutrophils which cause them to immediately arrest themselves on endothelial cells, 

alter their shape becoming polarized, activate migratory enzymes, perform 

extravasation of the blood vessel, demonstrate directed movement toward inflammation, 

and carry out a respiratory burst [6]. These changes in behavior are ultimately due to 

inflammatory signals, such as chemokines, binding to their cognate cellular receptors, 

thus beginning an intracellular signaling cascade [7, 8]. Infiltration of inflamed tissue is 

imperative to host defense, yet the uncontrolled invasion of leukocytes is responsible for 
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a variety of pathological conditions, including rheumatoid arthritis, ischemia-reperfusion 

injury, arteriosclerosis, virus-induced myocarditis, psoriasis, and allergic reactions [9].  

Neutrophils migrate through the body’s extracellular matrix to sites of 

inflammation, where they establish an important source of cytokines or other immune 

factors and have a defining role in the outcome of the inflammatory state [10]. As 

leukocytes migrate they express the necessary proteins to adhere to a variety of 

extracellular matrix macromolecules, such as laminins, collagens and fibronectin [11]. 

Chemoattractants, produced from microorganisms, necrotic, stromal, epithelial, and 

other cells present during inflammation, also bind to extracellular matrix elements due to 

their negative charges. The chemoattractants diffuse away from their source of origin, 

forming a gradient, casusing neutrophils to respond by migrating up the gradient 

towards the inflamed tissue [12]. Neutrophils can sense shallow gradients of 

chemoattractant, while remaining stationary, which is essential for navigation through 

crowded areas [13]. Interleukin-8 (IL-8), a strong activator of neutrophils, is one such 

chemoattractant involved in inflammation and requisition of neutrophils to sites of injury 

or infection [14]. 

 

1.2 Chemokines, IL-8 

Chemokines are a class of small chemotactic cytokines, roughly ten kilo-Dalton 

globular proteins, that signal to cells through seven-transmembrane G-protein coupled 

receptors (GPCRs) located in the cellular membrane. Chemokines have four 

characteristic cysteines, and are classified based on the arrangement of the first two 

cysteines, they are C, CC, CXC, and CX3C (X being any amino acid) [15]. The 
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chemokine receptors are named by the chemokine class they bind, for example CCR1 

through CCR9 bind CC chemokines and CXCR1 through CXCR7 bind CXC 

chemokines. Chemokines are involved in numerous biological processes such as 

inflammation, cell recruitment, wound healing, tumor growth, metastasis, angiogenesis 

or angiostasis, and lymphoid development. For a review of chemokines and their 

functions see [16].  

One subtype of CXC chemokines, which possess the ELR (glutamic acid –

leucine - arginine) amino acid motif, increase angiogenic effects in endothelial cells and 

are important in regulation of chronic inflammatory diseases [17]. ELR-CXC chemokines 

are also involved in neutrophil signaling by binding to their cognate receptors, CXCR1 

and CXCR2 (CXC chemokine receptor 1 and 2), which stimulates an inflammatory 

response through intracellular G-protein signaling cascades and signal amplification 

[18]. Evidence of ELR’s importance in chemotactic signaling has been verified, as the 

ELR motif is required for IL-8 to mount a proper inflammatory response, and mutation of 

the ELR’s arginine residue abolishes binding to CXCR2 [19]. It is also worthy to mention 

the ELR motif is present on seven of the 17 total CXC chemokines, and all seven are 

neutrophil activating chemokines, having a high affinity for CXCR2 [20]. 

All ELR CXC chemokines are neutrophil chemoattractants and induce 

chemotaxis, cellular polarization, intracellular [Ca2+] release, bioactive lipid production, 

activation of adhesion proteins, granule exocytosis, and the respiratory burst associated 

with neutrophils’ antimicrobial effects. These ELR-CXC chemokines play a direct role in 

chronic inflammatory diseases and inflammatory responses [21]. Of the ELR containing 

CXC chemokines IL-8 (CXCL8) has been firmly established as a pro-inflammatory 
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chemokine. Biologically active IL-8 is released by a variety of cell types, such as 

epithelial cells, endothelial cells, fibroblasts, keratinocytes, synovial cells, chondrocytes, 

macrophages, cells surrounding a necrotic focus, as well as many tumor cells, and it 

mediates a potent response in neutrophils by binding to CXCR2 [7, 22, 23]. IL-8 is 

generated as a 99-amino acid precursor protein, and after a cleavage of a 20 residue 

leader sequence it is released extracellularly. In its mature form IL-8 consists of 72 

amino acids and a heparin-binding domain. Processing of IL-8 greatly increases its 

biological activity, making this peptide one of the most potent chemoattractants for 

neutrophils [20, 24-26].  

 

1.3 CXCR2, an IL-8 Receptor 

Two different ELR chemokine receptors on neutrophils, CXCR1 and CXCR2, 

both bind to IL-8 [23, 27]. These two receptors share a 77% sequence identity, with two 

blocks containing a particularly high rate of conservation, and both genes are co-

localized on chromosome 2q35 [28, 29]. CXCR2 has a high affinity for IL-8 as well as 

other members of the ELR-CXC chemokine family (e.g., CXCL1 or MGSA/GROα, 

CXCL5 or ENA-78, and CXCL7 or NAP-2), whereas CXCR1 has a high affinity for IL-8 

only [22, 30]. Stimulation of either receptor triggers an increase in cytosolic [Ca2+], 

chemotaxis, and granule exocytosis [31, 32]. 

Despite their similarities, CXCR1 and CXCR2 differ in how they transduce the IL-

8 signal, ultimately creating different functional outcomes and behaviors. One example, 

is phospholipase D (PLD) activation and the respiratory burst are only triggered by 

CXCR1 activation, which indicates CXCR1 and CXCR2 function independently of each 
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other. Studies have also confirmed CXCR2, and not CXCR1, is the primary chemokine 

receptor required in mediating cellular chemotaxis in endothelial cells and neutrophils 

[33-35]. Furthermore, CXCR2 is able to actively respond to IL-8 at much lower 

concentrations. This evidence points to CXCR2 being used as a long-range 

chemoattractant receptor when IL-8 concentration is low, and as chemokine levels 

increase near the site of inflammation, CXCR1 will begin PLD activation and respiratory 

burst, causing tissue damage [36, 37]. 

Many unique proteins have been identified that associate with CXCR2, either in 

its unstimulated state (11 proteins), stimulated (7 proteins), or both (6 proteins) [38]. 

These proteins are thought to act as part of a CXCR2 chemosynapse, regulating the 

function of CXCR2 and mediating signal transduction by activating and repressing 

certain downstream signaling molecules. Many in vivo studies demonstrate the 

detrimental effects of excessive leukocyte cytokine signaling and show CXCR2 plays an 

important role in inflammatory diseases, such as atherosclerosis [39], chronic 

obstructive pulmonary disease [40], rheumatoid arthritis [41], multiple sclerosis [42], 

oligodendrocyte derived neuroimmunological diseases [43, 44], inflammatory bowel 

disease [45, 46], psoriatic epidermis [47], and in bronchial biopsies of chronic 

obstructive pulmonary disease patients [48]. 

 

1.4 G-protein Signaling 

CXCR2 is a seven-trans-membrane (7TM) spanning signaling receptor, which is 

a distinct group of related proteins within the heterotrimeric G-protein coupled receptor 

superfamily. G-proteins associate with the cytoplasmic side of 7TM receptors and 
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mediate signal transduction by linking the receptor to one or many downstream effector 

proteins [22, 49]. All GPCRs possess seven trans-membrane domains, having three 

extracellular loops, and three cytosolic loops. The C-terminus is found in the cytosol 

along with the 2nd and 3rd cytosolic loops, which are important for G-protein signaling 

[50]. When stimulated by IL-8, CXCR2 initiates a series of G-protein mediated 

downstream events, such as the mobilization of intracellular [Ca2+] and 

phosphatidylinositide hydrolysis, which generates inositol 1,4,5-trisphosphate (IP3) and 

diacylglycerol (DAG), and initiates cellular responses [51]. 

CXCR2 interacts with a complex of heterotrimeric G-proteins, named Gα, Gβ, 

and Gγ in order of decreasing mass. The α-subunits differ greatly from the other family 

members, defining the nomenclature of individual complexes, and associate with DRY 

motif (aspartate-arginine-tyrosine) on the 2nd cytosolic loop of CXCR2 [52]. Gβ and Gγ 

tightly bind in a heterodimer (Gβγ), and associate with lipid membranes, where 7TM 

receptors are imbedded [53]. In the resting state Gα binds GDP, forming GαGDP. 

GαGDP associates with Gβγ, forming a GαGDP-Gβγ complex that contacts CXCR2 

intracellularly, see Figure 1.1. Upon CXCR2 stimulation the GDP bound to Gα is 

exchanged for GTP, resulting in a Gα subunit structural change, GαGTP then 

dissociates from Gβγ and is free to diffuse from the membrane. Both dissociated 

GαGTP and Gβγ are active forms of G-proteins and can modulate the function of 

various downstream effectors. The GTP bound to Gα is hydrolyzed by an intrinsic 

GTPase-function of Gα, forming GαGDP and inorganic phosphate. Once GTP is 

hydrolyzed, GαGDP returns to the resting state by associating with Gβγ, completing the 

signaling cycle [54] [55, 56]. 



www.manaraa.com

7 

 

 

 

 

 

 

 

GPCRs can function catalytically, amplifying the original signal, by activating 

roughly 10 molecules of Gα over a few seconds [57, 58]. Furthermore, discriminatory 

signaling by G-proteins produces a variety of low molecular weight second messengers, 

including cyclic adenosine monophosphate (cAMP) or inositol triphosphate, further 

amplifying the original signal. These small messengers selectively generate dramatic 

intracellular changes, such as selective protein phosphorylation, gene transcription, 

cytoskeleton reorganization and membrane depolarization [56]. There are multiple 

Figure 1.1 CXCR2 is a GPCR 
CXCR2 is a seven transmembrane chemokine receptor. IL-8 binds to 
CXCR2 inducing the associated Gα subunit to exchange GTP for GDP. The 
bound Gαβγ heterotrimer then dissociates into separate Gα and Gβγ 
subunits, and activate downstream effectors. STTL refers to CXCR2’s 

carboxy-terminal PDZ motif (serine-threonine-threonine-leucine). 
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subtypes of each G-protein, although only certain combinations will form associable 

heterotrimers. Gα subunits are divided into four different subtypes (Gαi, Gαs, Gαq and 

Gα12/13) the Gβ subunit has five distinct subtypes (β1-β5), and Gγ subunits have ten 

different subtypes, making up hundreds of combinations [59]. On top of all the possible 

combinations of G-protein complexes that can associate with a single GPCR, multiple 

receptors can activate a single effector, and a single receptor can activate multiple 

effectors, forming complicated signaling networks [54, 60-63]. 

The time active Gα and Gβγ subunits remain separated for signaling is crucial, 

and usually very short, depending entirely on how fast GTP is hydrolyzed by Gα. But the 

intrinsic Gα GTPase-activity is usually long and insufficient, taking on the order of 

minutes to complete. The GTPase-activity of Gα can be expedited by other proteins, 

named GTPase-activating proteins (GAP). These GAPs can be the target protein of Gα 

for downstream signaling, or a specific modulator known as a regulator of G-protein 

signaling (RGS). For a review see [64]. In neutrophils, IL-8 stimulation of CXCR2 leads 

to Gβγ activation of its downstream effector, phospholipase C β2 (PLCβ2), which 

creates second messengers as well as stimulates calcium influx [25, 51, 65-67]. 

 

1.5 CXCR2 Contains a PDZ-motif 

Regulation of CXCR2 signaling can be accomplished through receptor 

desensitization, which uncouples G-proteins and internalizes the receptor, so the cell is 

not as sensitive to ligand stimulation [68-71]. After chemokine stimulation G-protein-

coupled receptor kinases (GRKs) phosphorylate CXCR2’s cytosolic tail and alter the 

binding sites of CXCR2 modulators. The phosphorylation of CXCR2 is required for 
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some processes, such as chemotaxis and internalization, but not others, like PLCβ2 

activation and [Ca2+] mobilization [36, 72-75]. In neutrophils, IL-8 preferentially binds 

CXCR2, inducing high levels of C-terminal tail phosphorylation and instigating rapid 

CXCR2 internalization [76, 77]. 

CXCR2 sequestration is reliant on the endocytotic functions of clathrin-coated 

pits and dynamin [78-80]. Receptor internalization is mediated by a peptide motif 

recognized on the C-terminal tail of CXCR2, LLKIL (leucine-leucine-lysine-isolucine-

leucine), and an aspartate residue in the second extracellular loop [52, 81]. The LLKIL 

motif is necessary for internalization by adaptin-2 (AP-2) [82]. After ligand stimulation, 

phosphorylation of CXCR2’s C-terminus by GRK2 encourages binding of AP-2 as well 

as βArrestin which form the clathrin coated vesicles necessary for internalization [83, 

84]. Like other types of GPCRs, CXCR2 undergoes trafficking between intracellular 

compartments and the membrane. 

Once internalized CXCR2 has been de-phosphorylated it can be transferred to 

late endosomes for degradation or recycled to the plasma membrane for another round 

of signaling [77]. A domain was found in the C-terminus of CXCR2 that regulates post-

endocytotic sorting back to the cellular membrane [85]. Originally CXCR2 degradation 

was thought to occur via the ubiquitination pathway, but is instead modulated by the 

type I PDZ ligand on CXCR2’s C-terminus. CXCR2 lacking the PDZ ligand will be 

shuttled to the late endosome, and degraded, at a much higher rate than the wild-type 

(WT) CXCR2, ultimately affecting chemotaxis towards CXCR2 ligands [85]. 
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1.6 NHERF1 Binds CXCR2 

The NHERF protein family consists of four members: NHERF1 (EBP50), 

NHERF2 (E3KARP), NHERF3 (PDZK1) and NHERF4 (IKEPP). NHERF1 and NHER2 

contain two PDZ domains while NHERF3 and NHERF4 possess four PDZ domains [86]. 

The human NHERF1 gene, SLC9A3R1, encodes a 358 amino acid protein (38.6kD) 

with two tandem PDZ domains that share 74% homology [87]. High homology in PDZ 

domains probably arose through evolutionary gene duplication as PDZ domains are 

highly conserved modular structures which occur frequently throughout the genome and 

are present in an overwhelming number of phyla [88-90]. 

The two NHERF1 PDZ domains, PDZ I and PDZ II, have similar secondary 

structures, and collectively make up nearly 70% of NHERF1. They are followed by a 30 

amino acid C-terminal region that associates with members of the merlin-ezrin-radixin-

moesin family (MERM), a group of membrane-cytoskeleton adaptor proteins [91]. Both 

PDZ domains of NHERF1 are type I PDZ domains, preferentially binding to short C-

terminal peptide sequences of target proteins, X-(S/T)-X-(V/L) [92, 93]. NHERF1 binds 

to cytoskeletal adaptor proteins through its MERM-binding domain, and links them to 

integral membrane proteins through the PDZ motif on their C-terminal tail, such as the 

one found in CXCR2 [94, 95]. Experiments show PDZ I and PDZ II domains bind to their 

C-terminal PDZ-ligands at nanomolar affinity, to which crystal structures have 

illuminated much of their specificity [96]. 

A crystal structure of NHERF1 binding to the C-terminal region of Cystic Fibrosis 

Transmambrane Conductance Regulator (CFTR) was reported along with NHERF1 
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binding to the β2 Adrenergic Receptor and Platelet-derived Growth Factor Receptor 

(PDGFR) [96, 97]. These experiments demonstrate the NHERF1-PDZ I core domain 

consists of six β strands (β1-β6) and two α helices (α1 and α2), and the PDZ-motif 

inserts into the binding pocket in a β strand addition [98], see Figure 1.2. A slightly 

larger hydrophobic binding pocket is found in NHERF1 compared to other type I PDZ 

proteins, as NHERF1 prefers binding leucine at P0 instead of valine (P0 refers to the 

ligands carboxy-terminal amino acid, the previous being P-1, P-2, etc.). Leucine was 

shown to enter a deep cavity formed by Tyr24, Gly25, Phe26, Leu28, Val76, and Ile79 

[2]. These residues form a tight hydrophobic pocket for the isobutyl side chain of P0 

leucine and mediates the hydrogen bonding and coordination of H2O atoms, which 

accounts for the strict stereochemical requirement of a C-terminal leucine [99-101]. 
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A separate pocket for the P-2 side chain is also important for binding, as studies 

showed NHERF1 preferentially binds to X-(S/T)-X-L, and changes resembling P-2 

phosphorylation lost all PDZ domain-motif interaction [97, 99]. The P-2 amide nitrogen 

and carbonyl oxygen both bind conserved residues in the PDZ domain binding pocket, 

and the hydroxylated side chain oxygen atom of (S/T) at P-2 specifically interacts with 

Figure 1.2 NHERF1 PDZ Domain-motif Interactions 
The NHERF1 PDZ1 peptide-binding pocket (green) bound to the C-terminal PDZ-
motif (gray). Binding occurs in an antiparallel β strand addition, as the ligand fits 
into a pocket between the α2 helix and the β2 strand. The PDZ-motif is a 
consensus type I PDZ ligand, X-S/T-X-V/L (aspartic acid-glutamic acid-
glutamine-leucine). Water molecules are represented as green dots, hydrogen 
bonds are orange dashed lines, and hydrophobic interactions are black dashed 
lines. Image was obtained from [2]. 
 
 
 



www.manaraa.com

13 

 

the N3 nitrogen of a histidine residue in class I PDZ domains [2, 96]. The possibility of 

7TM receptors C-terminus being phosphorylated, thus determining PDZ domain 

interactions, has made a great impact in understanding regulatory functions of PDZ-

containing GPCRs now that the specifics have been worked out. In vitro studies show 

that phosphorylation of serine residues and binding of adaptor proteins to CXCR2’s C-

terminus facilitate internalization and intracellular movement, which attests to the 

importance of these C-terminal residues in CXCR2 cycling [102].  

Another role of NHERF1 involves the regulation of small signaling molecules. 

CXCR2 can stimulate activation of PLCβ2, which increases intracellular calcium levels 

from [CA2+] stores, this in turn initiates an extracellular [CA2+] influx through store-

operated calcium channels (SOCs). It was shown that NHERF1 interacts with SOCs 

and PLCβ2 through PDZ domains, suggesting NHERF1 can nucleate them into a 

complex on the plasma membrane [103]. NHERF1 can also dimerize or oligomerize 

through its two PDZ domains which could nucleate many receptors, ion channels, 

effector molecules and actin-interacting proteins, using NHERF1 as a scaffold to stably 

anchor these complexes to the actin cytoskeleton [104-106]. Recently we found 

NHERF1 interacts with CXCR2 and PLCβ2 through PDZ-dependent interactions [1]. 

 

1.7 PLCβ2, CXCR2’s Downstream Effector 

Mammalian phospholipase C-β2 (PLCβ2) is a multi-domain signaling enzyme 

whose primary role is to generate low-molecular weight signaling molecules and 

propagate signal transduction from 7TM receptors [107, 108]. During stimulation PLC 

hydrolyzes the lipid phosphatidylinositol 4,5-bisphosphate (PIP2), generating two 
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secondary messengers: inositol 1,4,5- trisphosphate (IP3), a potent calcium mobilizing 

second messenger, and diacylglycerol (DAG), which activates the downstream effector 

protein kinase C (PKC) [107], Figure 1.3. PLCβ2 is one of many Phosphatidylinositide- 

specific PLC enzymes  which can ultimately be divided into six families: β  γ  δ  ε  ε, δ  

and range between 85 to 150 kDa [109].  

 

 

 

 

 

 

The β family consists of 4 isozymes, PLCβ1 through PLCβ4, which are regulated 

by G-proteins and contain a consensus PDZ motif at their carboxyl termini (PLCβ2’s 

PDZ-motif is glutamic acid – serine – arginine - leucine) [110]. PLCβ2 is primarily 

expressed in hematopoietic cells, PLCβ3 and PLCβ1 are found in a wide variety of cells 

and tissue types, and PLCβ4 is expressed predominantly in neuronal cells [111-113]. 

Figure 1.3 Activation of PLCβ2 
PLCβ2 associates with the plasma membrane, as does Gβγ. Active Gβγ 
stimulates PIP2 cleavage by PLCβ2, resulting in DAG and IP3 formation. 
Downstream effects of DAG and IP3 formation include PKC activation and 
calcium influx. ESRL corresponds to PLCβ2’s PDZ-motif (glutamic acid – 

serine – arginine – leucine). 
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Eukaryotic PLCβ enzymes contain a sequence of modular domains which are organized 

around a catalytic α/β barrel formed from its conserved X and Y-box regions [114]. 

These modular domains include a pleckstrin homology (PH) domain, EF-hand motifs, a 

C2 domain, and additional regulatory units present on the PLCβ and PLCγ subtypes 

[107].  

The PH domain is a highly conserved motif around 120 amino acids in length that 

confers specificity to different lipids or proteins and is located in the N-terminal region of 

PLC [115]. PH domains are prominently found in proteins associated with cellular 

membranes and can bind specific phosphoinositides (e.g. PIP2, PIP3), although 

PLCβ2’s PH domain is not phosphoinositide specific [116-119]. They also have the 

ability to bind Gβγ subunits  especially in PLCβ2  where Gβγ binding to the PH domain 

is sufficient for enzymatic activation, and increases product release [119-121].  

Furthermore, CXCR2 activity is able to recruit a variety of proteins through inositide-

specific PH domains to the leading edge of migrating cells [122]. 

Regulation of Gβγ subunit specific activation of PLCβ2 is through 

phosphorylation by cAMP-dependent protein kinase A (PKA) [123]. In response to 

CXCR2-PLCβ2 mediated calcium influx, some forms of adenylyl cyclase will activate a 

downstream protein kinase, thereby phosphorylating and deactivating PLCβ2, 

repressing calcium influx [124]. Phosphorylation by PKA also uncouples receptors that 

signal through Gαi proteins, such as CXCR2 which alludes to a greater on-off switch of 

PLCβ signaling [125].  
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1.8 Chemokine Signaling Triggers Chemotaxis 

When the neutrophil cell surface receptor CXCR2 is stimulated from the 

inflammatory chemokine IL-8, the G-protein heterotrimer becomes activated. CXCR2 

coupled G-protein signaling triggers a variety of downstream effects which ultimately 

dictate cellular behavior and spur the cell to polarize its cytoskeleton, form actin derived 

pseudopodia, and begin chemotaxis [126-128]. The asymmetric manner in which cells 

polarize involve a slew of feedback mechanisms that modulate actin extension at the 

leading edge (frontness pathway) and promote contractile cytoskeletal forces at the rear 

(backness pathway) [129, 130]. The first level of response in chemotaxing cells is the 

separation of uniformly distributed transmembrane chemoattractant receptors into the 

asymmetric localization of phosphatidylinositol 3,4,5-trisphosphate (PIP3) [131]. 

Proteins that interact with, synthesize, or degrade PIP3 are the first effectors in the 

signaling process and they utilize PIP2, the same precursor molecule used by PLCβ2.  

When PLCβ2 cleaves PIP2, IP3 and DAG are formed, and PIP2 is enzymatically 

removed from that region of local membrane. IP3 dissociates from the membrane and 

binds to its receptor on the surface of the endoplasmic reticulum (ER) which stimulates 

an increase of intracellular [Ca2+]. The spike in intracellular [Ca2+] initiates an influx of 

extracellular [Ca2+] through SOCs to replenish the depleted internal stores, and also 

activates [Ca2+] dependent enzymes. DAG, the cleaved lipid portion of PIP2, in 

conjunction with an influx of [Ca2+] from IP3, activates Protein Kinase C (PKC) which 

helps propagate the original signal by phosphorylating target proteins. A few different 

isoforms of PKC are expressed in human neutrophils, and PKC activity is crucial for 

neutrophil chemotaxis, but not actin mobilization [132-135]. 
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Instead of cleaving the inositol head-group off the glycerol-lipid side chains, like 

PLCβ2, some proteins phosphorylate or de-phosphorylate the head-group. One of these 

proteins is the class I phosphatidylinositol-3-kinase γ enzyme (PI3K), which is 

expressed mainly in hematopoietic cells [136]. PI3K phosphorylates the 3’ position on 

inositol phospholipids in the cytosolic plasma membrane, namely PIP2 (phosphorylated 

on inositol carbons 4 and 5) is converted to PIP3 (phosphorylated on inositol carbons 3, 

4 and 5) [137]. PI3K is stimulated by free Gβγ subunits from activated CXCR2, or 

another small G-protein Rac-1, which are both localized to the leading edge of polarized 

neutrophils [138-140]. 

As PI3K is localized to portions of the plasma membrane, other proteins such as 

PTEN (phosphatase and tensin homology deleted on chromosome ten protein), are 

delocalized from the front of the cell and become restricted to the rear and lateral sides. 

PTEN is a phosphatase that removes the 3-position phosphate from the inositol ring, 

thereby converting PIP3 back into PIP2 [122, 141, 142]. Re-localization of PTEN occurs 

through a PIP2 binding domain on its N-terminus, which associates with areas of PIP2 

accumulation [143]. PTEN also contains a PDZ-motif and forms a ternary complex with 

NHERF2, PTEN and PDGFR, which has been implicated in chemotaxis and tumor 

growth [144]. 

Like PTEN, SHIP-1 co-localizes with PIP2 and is responsible for removing the 5-

position phosphate from inositol rings in human neutrophils [145]. Thus, CXCR2 

downstream effectors will remove PIP2 from the leading edge, thereby removing 

PTEN/SHIP-1 from the leading edge leaving PI3K to phosphorylate PIP2 into PIP3 

[146-148]. A reciprocal accumulation of PIP3 is formed at the leading edge and a 
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surplus of PIP2 is dispersed throughout the cells lateral and posterior areas essentially 

forming a phosphatidylinositol gradient, which reflects the extracellular chemokine 

signal [149].  

Evidence suggests that localization of PIP3 results in the polymerization of F-

actin at the leading edge, which leads to pseudopod formation and extension by the 

Rho-family-GTPases Rac-1 and Cdc42 [150-154]. In vitro studies have linked PIP3 

activity with Rac-1 and Cdc42, which are protein moderators involved in actin dynamics 

and possesses GTPase activity (active only when bound to GTP) [155, 156]. A 

disruption of a Rac-1 GAP, DdRacGAP1, leads to increased levels of actin 

polymerization and pseudopod formation, and a dominant negative form of Rac-1 

prevents pseudopod formation and cell migration [157]. PRex-1 exchanges GDP for 

GTP on Rac-1 and is synergistically activated by the PI3K product PIP3 and active Gβγ 

subunits, suggesting GPCR stimulation and subsequent PI3K activity is sufficient for 

Rac-1 to be activated [154, 158, 159]. Active Rac-1 is necessary for pseudopod 

formation and actin mobilization at the leading edge and together with active Gβγ can 

stimulate PI3K activity. This facilitates a feedback loop by creating more PIP3, activating 

PRex-1, which promotes Rac-1 activity [160, 161].  

In a similar fashion to Rac-1, Cdc42 is important for cellular chemotaxis and 

cellular polarity. A dominant negative expression of Cdc42 causes cells to move 

randomly in chemokine gradients and disrupts polarization [162-165]. Gβγ subunits 

cause Cdc42 to activate PAK1, a serine/threonine protein kinase [166]. PIXα, a small 

GEF that contains a PH domain, is constitutively associated with PAK1, and mediates 

the activation of Cdc42 by Gβγ in vivo [167-169]. PIXα activity is also required for PTEN 
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localization to the trailing edge of cells, probably through activation of Cdc42 [167]. This 

suggests Cdc42 is required for intracellular gradient formation of a chemoattractant 

signal and Rac-1 is required to promote movement by stimulating actin mobilization.  

The induction of leading edge actin polymerization is mediated by the Arp2/3 

protein complex. A huge variety of GEFs can promote Rac-1/Cdc42 activation, and 

downstream effectors of Rac-1 and Cdc42, such as WAVE (SCAR) and WASP 

(Wiskott-Aldrich Syndrome protein) promote Arp2/3 actin polymerization [170, 171]. 

SCAR and WASP contain actin binding domains, selective phospholipid binding 

domains similar to PH domains, and both are activated by PIP3 [172, 173]. 

Furthermore, they only interact with the activated (GTP-bound) forms of Rac-1 and 

Cdc4, thus localizing actin, active Cdc42/Rac-1, PAK1 and the ARP2/3 complex 

together near sites of PIP3 accumulation and Gβγ subunits [174]. 

 

1.9 CXCR2 Modulators  

LASP-1 is a cytoskeletal scaffold protein implicated in actin bundling and 

stabilization, and binds to CXCR2 in both basal and activated forms on the LLKIL motif 

necessary for AP-2 sequestration [175-177]. Furthermore, LASP-1’s SH3 domain 

interacts with proteins that localize to the leading edge of migratory cells and plays an 

important role in cytoskeletal organization and migration in neutrophil like HL-60 cells 

[178, 179]. Another CXCR2 binding protein, Vasodilator-stimulated phosphoprotein 

(VASP), promotes actin filament elongation and pseudopod formation by regulating 

actin networks, attracting profiling-actin complexes, and destabilizing actin-capping 

proteins [180-184]. Both VASP and LASP-1 can be controlled by regulatory kinases 
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PKA and PKG. VASP can also be phosphorylated by PKC, which contributes to their 

regulation once IL-8 signaling is initiated [185-188]. 

IQGAP1 is postulated to bind CXCR2 in its inactive form and, once Cdc42 is 

activated, IQGAP1 will associate with activated Cdc42, enabling IQGAP1 to release 

CXCR2. IQGAP1 then is free to dimerize and bind F-actin, cross-link actin filaments, 

and mediate chemotaxis [38]. Furthermore, IQGAP1 binds and inhibits the GTPase 

activity of Cdc42/Rac-1, stabilizing them in active-signaling forms [189, 190]. Two other 

proteins that affect GTPase activity of CXCR2’s G-proteins are 14-3-3γ and RGS12. 14-

3-3γ inhibits RGS proteins, allowing Gα subunits to remain active for a longer period of 

time [191, 192]. The GAP protein RGS12 associates with CXCR2 through its PDZ 

domain, and stimulates Gα to hydrolyze GTP and return to its resting state. The 

interplay between RGS12, 14-3-3γ and CXCR2 is thought to control CXCR2 G-protein 

signaling after IL8 initiation, but their regulation is still unknown [64, 193, 194]. 

 

1.10 Formation of the Uropod 

Uropod contraction (backness pathway) at the rear of the cell is necessary to 

allow the cell to move forward towards the leading edge. In neutrophils backness 

signals, which include PTEN/SHIP-1 localization, activation of a second GTPase (Rho), 

a Rho-dependent kinase (p160-ROCK), and Myosin II activation, results in actomyosin 

contraction at the rear of the cell [195-198]. Activated GTPase Rho is responsible for 

activation of p160-ROCK, which enhances phosphorylation of myosin light chain (MLC), 

inhibits MLC phosphatase, and stimulates actin-myosin contraction [199]. MLC 

contraction is also dependent on [Ca2+] /Calmodulin for proper function, as a PLCβ2 



www.manaraa.com

21 

 

mediated [Ca2+] influx is required for proper tail retraction and detachment from certain 

substrates [200]. 

Despite a requirement for migrational frontness, Cdc42 also plays an essential 

role in Rho activation in the uropod [169, 201, 202]. These small G-proteins act as 

another layer of signaling on top of the PIP2/PIP3 separation in cells, as Rho inhibits 

Rac-1 frontness activity, actin assembly, polarity, and motility, and active Rac-1 

represses Rho activity in the uropod [195, 203]. This all implies a Rac-1 dependent 

frontness and a Rho-dependent backness that regulate cellular polarity, initiated 

through CXCR2/G-protein activation of Cdc42. 

 

1.11 A Means to an End 

 Neutrophils respond to stimulating signals in a hierarchical manner. “End target” 

signals, such as bacterial products like N-formyl-methionine-leucine-phenylalanine 

(fMLP), are preferred targets over “intermediate” signals, such as chemokines like IL-8 

[204]. fMLP is a potent chemoattractant and has been implicated in directing cell 

movement, phagocytosis, release of proteolytic enzymes, cytokine production and 

generation of reactive oxygen intermediates [205]. The human formyl-peptide receptor 

(FPR), belongs to the seven transmembrane GPCR superfamily, like CXCR2, and is 

expressed on neutrophils as well as many other inflammatory cells. Since bacteria and 

mitochondria are the only two sources of formylated peptides, FPR can direct 

inflammatory cells to sites of either bacterial invasion or host tissue damage [206].  

Neutrophils can distinguish between the intermediary and end target signals 

through their different intracellular signaling pathways. Proof of this was established as 
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treatment of neutrophils with PI3K inhibitors represses IL-8 migration, but not fMLP 

migration. Even though both IL-8 and fMLP can activate the same isoform of PI3K and 

mediate responses in a PIP3 dependent manner, fMLP, but not IL-8, activates p38 

mitogen activated protein kinase (MAPK) [207, 208]. fMLP signaling also activates a 

different phospholipase than IL-8, phospholipase A2 (PLA2), which converts 

phosphatidylcholine to arachidonic acid, and along with MAPK activity permits the cells 

to further respond to bacterial products [209]. What is more interesting it that PI3K 

activity is abolished when both intermediate and end target signals are present, so that 

intermediary signals are disregarded. This is thought to occur through a MAPK-

dependent activation and/or re-localization of PTEN to the plasma membrane, which 

reverts PIP3 back into PIP2.  

 

1.12 Summary of IL-8 Migration 

In summary, localized areas of inflammation will produce chemokines to attract 

immune cells to repair damage. The highly potent IL-8 is received by CXCR2 on 

neutrophil membranes and spurs chemotaxis towards the signal. IL-8 stimulated 

CXCR2 will activate Gα and subsequently free Gβγ, which in turn activates local PLCβ2 

and PI3K. PLCβ2 converts PIP2 into IP3 and DAG, which act synergistically to begin a 

signaling cascade through PKC and calcium affected proteins. PI3K phosphorylates 

PIP2 creating PIP3, and together with PLCβ2 remove PIP2 from the area of CXCR2/IL-

8 stimulation, forming a PIP3 gradient near active CXCR2. PTEN/SHIP-1 colocalizes 

with PIP2 and is sequestered to the posterior and lateral sides of the cell. The re-
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localization away from the front of the cell allows all PIP3 that diffuses away from the 

leading edge to be converted back to PIP2, isolating the PIP3 to the leading edge.  

At the leading edge PIP3 and Gβγ synergistically promote GTP exchange of 

Rac-1. Active Rac-1 recruits WASP and SCAR through its CRIB domain, which both 

increase Arp2/3 complex-mediated actin polymerization. Rac-1 also stimulates PI3K 

activity increasing PIP3 formation, creating a positive feedback loop that is localized at 

the leading edge of the cell. Cdc42 is also activated by Gβγ and PI3K action on the GEF 

PIXα. These active proteins are recruited to sites of PIP3 and actin polymerization by 

Arp2/3 effectors similar to Rac-1, where they stimulate actin-derived pseudopod 

formation and create a leading edge. Furthermore active Cdc42 triggers Rho activity, 

and through p160-ROCK, Myosin II, and PLCβ2-derived calcium influxes, actomyosin 

fibers begin to contract in the uropod [210]. Thus, sites of CXCR2 stimulation ultimately 

lead to areas of actin polymerization and forward movement. See Figure 1.4. 
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Figure 1.4 PIP3 Dictates Cellular Polarization 
After ligand binding to CXCR2 a local population of PIP3 is produced, 
forming an intracellular gradient. PIP2 is removed from the leading edge 
through PLC2 and PI3K, and accumulates in the posterior. PIP3 recruits 
proteins involved in migrational frontness including Cdc42, Rac-1, the 

Arp2/3 complex, and actin modulating proteins.  
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CHAPTER 2 

MATERIALS & METHODS 

2.1 Antibodies and Reagents 

Anti-human and murine CXCR2, PLCβ1, β2, and β3 antibodies were purchased 

from Santa Cruz Biotechnology (Santa Cruz, CA). Rabbit anti-NHERF1 polyclonal 

antibody was from Sigma, and mouse anti-NHERF1 monoclonal antibody was from 

Santa Cruz. Anti-HA HRP and anti-FLAG HRP were obtained from Sigma. 

Lipofectamine 2000, Hanks' buffered salt solution (HBSS), Fura-2, and the cell culture 

media and fetal bovine serum (FBS) were procured from Invitrogen. ChariotTM 

peptide/protein delivery reagent was purchased from Active Motif (Carlsbad, CA). 

Chemokines IL-8/CXCL8, growth-related oncogene α (GROα/CXCL1)  and N-formyl-

methionine-leucine-phenylalanine (fMLP) were obtained from ProSpec (East Brunswick, 

NJ). The human and murine CXCR2 C-tail peptides (biotin-conjugate at N terminus): 

WT (biotin-FVGSSSGHTSTTL for human CXCR2 C-tail; and Biotin-FVSSSSANTSTTL 

for mouse CXCR2 C-tail)  PDZ motif deletion  ΔTTL, or PDZ motif mutant, AAA, were 

synthesized by Genemed Synthesis, Inc. (San Antonio, TX).  

 

2.2 Plasmids, Cloning, and Mutagenesis 

The His-S-tagged fusion proteins for the full-length of CXCR2 or PLCβ2, or the 

C-terminal tail fragments of CXCR2 (last 45 amino acids; i.e. amino acids 316–360 for 

human CXCR2, and amino acids 315–359 for murine CXCR2) or human PLCβ2 (last 

100 amino acids, i.e. amino acids 1086–1185) were generated by PCR cloning into 

pTriEx-4 or pET30 vectors (Novagen). The fusion proteins were purified using Talon 

http://www.jbc.org/cgi/redirect-inline?ad=Novagen
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beads (binding to His tag), and eluted with 200 mm imidazole. The imidazole-eluted 

affinity-purified His-S-tagged CXCR2 or PLCβ2 fusion proteins (full-length and/or C-

terminal tail fragments) were used in subsequent biochemical assays. 

 

2.3 Cell Culture and Transfection 

The HL-60 cells were obtained from American Type Culture Collection (ATCC) 

(Manassas, VA) and maintained in Iscove's modified Dulbecco's medium (Invitrogen) 

supplemented with 10% FBS, and penicillin/streptomycin at 37 ºC with 5% CO2. HL-60 

cells were differentiated into the granulocyte lineage with 1.2% Me2SO in Iscove's 

modified Dulbecco's medium with 10% FBS for 5–7 days. The HEK293 cells and HT-29 

human colonic epithelial cells were purchased from ATCC and cultured in Dulbecco's 

modified Eagle's medium (DMEM) (Invitrogen) supplemented with 10% FBS as 

described before [211]. HEK293 cells were transfected using Lipofectamine 2000 with 

HA-tagged human CXCR2, murine CXCR2, and FLAG-tagged PLCβ1, β2, β3, and β4, 

respectively, for various biochemical assays.  

 

2.4 Human Neutrophil Isolation from Buffy Coats 

Briefly, neutrophils from buffy coats (purchased from LifeBlood Inc.) of citrated 

human peripheral blood collected from healthy donors were isolated by dextran 

sedimentation followed by density gradient centrifugation in Histopaque (Sigma), as 

described in [212]. Contaminating red blood cells were lysed by hypotonic shock with 

0.2% NaCl. The purity and viability of isolated neutrophils was assessed by trypan blue 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
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dye exclusion, and the viability of isolated neutrophils was routinely found to be >98%. 

Neutrophils were used immediately after isolation for all assays.  

 

2.5 Murine Neutrophil Isolation from Mouse Bone Marrow 

Isolation of murine neutrophils from bone marrow was carried out as reported 

previously [213]. Briefly, the femurs and tibias were removed from euthanized mice and 

the bone marrow cells were flushed out of the bones with ice-cold Ca2+- and Mg2+-free 

HBSS (HBSS−). Bone marrow cells were collected by centrifugation at 800 × g for 5 

min, and then resuspended in 3 ml of HBSS−. The cells were layered over a 

discontinuous 3-layer Percoll (Amersham Biosciences) gradient (75, 67, and 52%) and 

subjected to centrifugation at 1,060 × g for 30 min at 22–24 ºC. The lowest band 

between 75 and 67% (the 75/67% interface) was then collected as the neutrophil 

fraction and washed twice with HBSS−. Any remaining red blood cells were eliminated 

by hypotonic lysis, and the purity of the neutrophils was typically ≥90% as assessed by 

crystal violet staining.  

 

2.6 Western Blots 

Cells were washed twice in PBS, then lysed in lysis buffer (PBS, 0.2% Triton) 

supplemented with protease inhibitors (1 mm phenylmethylsulfonyl fluoride  1 μg/ml of 

aprotinin  1 μg/ml of leupeptin  and 1 μg/ml of pepstatin) and HALT phosphatase 

inhibitor cocktail (Thermo Scientific), and the clear supernatant (16,000 × g, 15 min) was 

assayed for protein concentration using Quick Start Bradford Dye Reagent (BIO RAD). 

Samples were mixed with NuPAGE LDS Sample Buffer 4x (Invitrogen) containing 10% 
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2-mercaptoethanol (BIO RAD) and heated to 70ºC for 10min and separated by SDS-

PAGE on Mini-PROTEAN precast TGX-Gels (BIO RAD) 7.5%, any-KD, or Express 

PAGE gels 10% (GeneScript). The membranes were immunobloted with NHERF1, 

NHERF2, or PLCβ1  β2  β3 antibodies and visualized using a BioSpectrum 500 Imaging 

system (UVP). 

2.7 Pulldown Assay 

Freshly isolated human or murine neutrophils, dHL60 cells, or HEK293 cells 

overexpressing various constructs (3HA-tagged human CXCR2, murine CXCR2, or 

FLAG-tagged PLCβ1, β2, β3, β4) were used for the GST pulldown assays, as reported 

in [211, 214]. In brief, the cells were lysed in lysis buffer (PBS, 0.2% Triton) 

supplemented with a mixture of protease inhibitors (containing 1 mm 

phenylmethylsulfonyl fluoride  1 μg/ml of aprotinin  1 μg/ml of leupeptin  and 1 μg/ml of 

pepstatin) and phosphatase inhibitor mixture (Sigma), and the clear supernatant 

(16,000 × g, 15 min) was mixed with various GST-PDZ fusion proteins (GST-NHERF1, 

GST-NHERF2, or GST-PDZK1) or GST alone at 4 ºC for 3 h. The complex was pulled 

down by glutathione-agarose beads (BD Biosciences) at 4 ºC for 1 h, washed three 

times with lysis buffer  and eluted in Laemmli sample buffer containing β-

mercaptoethanol. The eluents were separated by SDS-PAGE and immunoblotted with 

anti-HA, CXCR2, or PLCβ1, β2, β3, or anti-FLAG (for PLCβ4) antibodies, and the blots 

were visualized using a BioSpectrum 500 Imaging system (UVP).  
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2.8 Pairwise Binding  

Purified GST-NHERF1 was mixed with purified His-S-CXCR2 C-tail fragments in 

binding buffer (PBS, 0.2% Triton) supplemented with a mixture of protease inhibitors at 

22–24 ºC for 1 h. Next the mixtures were incubated with S-agarose beads (Novagen) for 

2 h. The beads were washed three times with binding buffer and eluted with Laemmli 

sample buffer. The eluents were separated by SDS-PAGE and immunoblotted with anti-

NHERF1 antibody. 

 

2.9 Macromolecular Complex Assembly 

Purified His-S-tagged PLCβ2 C-tail (last 100 amino acids at C terminus 

containing the PDZ motif) or His-S-murine CXCR2 C-tail (last 45 amino acids at the C-

terminus containing the PDZ motif) was mixed with GST-PDZ scaffold proteins (or GST 

alone) in 200 μl of binding buffer (PBS  0.2% Triton, supplemented with protease 

inhibitors), and the complex was pulled down with S-protein-agarose. This step is also 

referred to as pairwise binding as described above. The dimeric complex was then 

mixed with HEK293 cell lysates overexpressing 3HA-CXCR2 or full-length PLCβ2 for 3 

h at 4 ºC, and washed extensively with lysis buffer. The bound proteins were then eluted 

and immunoblotted using anti-HA (for CXCR2) or PLCβ2 antibodies.  

 

2.10 Co-immunoprecipitation 

Fresh cells (dHL-60 or murine bone marrow neutrophils) were cross-linked with 1 

mm dithiobis (succinimidyl propionate), [215].Thereafter, the cells were solubilized in 

PBS, 0.2% Triton, and cleared lysates (16,000 × g, 15 min) were processed for co-

http://www.jbc.org/cgi/redirect-inline?ad=Novagen


www.manaraa.com

30 

 

immunoprecipitation and immunoblotting, as described before [211, 214]. A Co-

immunoprecipitation Kit (Pierce) was used to immobilize the anti-CXCR2 IgG to the 

resin and the co-precipitated protein complex was eluted with Laemmli sample buffer 

before being subjected to immunoblotting and probed for PLCβ2 and NHERF1. The 

same membrane was stripped using RestoreTM Plus Western blot Stripping Buffer 

(Thermo Scientific) and reprobed for CXCR2.  

 

2.11 CXCR2 Peptide in Vitro Competitive Binding 

In brief, affinity-purified HA-tagged human CXCR2 (37.5, 75, and 150ng) was 

immobilized on the nitrocellulose membrane by spotting, and the membrane was 

blocked with TBS, 0.1% Tween supplemented with 1μg/ml of BSA (TBST-BSA) for 1 h 

at 22 ºC. During this time, 10μg of His-S-tagged NHERF1 was mixed with TBST-BSA in 

the presence or absence of 25μg of human CXCR2 C-tail WT peptide for 1 h at 22–24 

ºC, and then the mixture was added to the membrane and incubated for 12 h at 4 ºC. 

The membrane was washed extensively and immunoblotted with S-HRP (Novagen), 

which detects the S-tag within the His-S-NHERF1 fusion proteins on Western blot.  

 

2.12 CXCR2 Degradation  

HL-60 cells were differentiated into the granulocyte lineage (dHL-60) as 

previously described. 1x10^6 cells dHL-60 cells were delivered 3.33ug of peptide (WT 

or DEL) through the ChariotTM peptide/protein delivery system, per the Chariot protocol 

(www.activemotif.com/documents/5.pdf) [214]. Cells were incubated for 0min, 3hours, 

or 6hours, in IMDM supplemented with 0.5% FBS and IL-8 (100ng/ml). Samples were 

http://www.jbc.org/cgi/redirect-inline?ad=Novagen
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then rinsed, pelleted, and lysed in lysis buffer as described above. Protein estimations 

were taken and a Western blot was performed on the samples to determine total 

CXCR2 amount [80]. Processing of the Western blot data was completed as described 

previously.  

 

2.13 Zigmond Migration Chamber  

HL-60 cells were differentiated into the granulocyte lineage (dHL-60), with 1.2% 

DMSO in IMDM medium with 10% FBS for 5-7 days as described above [83, 216]. 

CXCR2 C-tail peptide (0.333ug of  T or ΔTTL) was delivered to 3x105 dhL60 cells 

through the ChariotTM peptide/protein delivery system [214]. 22x40-1.5 mm glass cover 

slips (Fisher Scientific) were coated in fibronectin, and dHL-60 cells were allowed to 

adhere to the slips for 30min. Cells were rinsed in IMDM and the coverslip was inverted 

onto the top of the Zigmond chamber. Clamps were applied to secure the coverslip in 

place and 90ul of IMDM was added to each chamber well [217, 218]. See Figure 2.1. 

The Zigmond chamber was placed in a TC1-100 microscopic temperature 

controller (37ºC, Bioscience Tools), and mounted onto a VWR (Randor, PA) microscope 

with a Vista Vision mounted camera. Chemoattractants, 50ng/ml IL-8 or 0.5uM fMLP, 

were added to the appropriate wells [83]. Images were captured on uIMAGE micro 

image analysis software, every 30 seconds for a total of two hours (240 images) [219]. 

The images were processed using ImageJ software (http://rsbweb.nih.gov/ij/), migratory 

paths were tracked using the Manual Tracking plug-in 

(http://rsbweb.nih.gov/ij/plugins/track/track.html), and any additional data processing 

was obtained using the Chemotaxis Tool (http://www.ibidi.com/) and through Microsoft 

http://rsbweb.nih.gov/ij/
http://rsbweb.nih.gov/ij/plugins/track/track.html
http://www.ibidi.com/
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Excel. dHL-60 cells that migrated were randomly selected for tracking from each 

experiment. 

2.14 Statistical Analysis 

Error is expressed as the standard deviation of at least three independent 

experiments. Statistical significance of the migration experimental data was determined 

by the Rayleigh test, a value of p < 0.05 is considered to be significant.  

 

 

 

 

 

 

  

Figure 2.1 Zigmond Chamber 
An illustration of the Zigmond chemotaxis chamber, the only difference 
between the wells (colored pink and orange) is the presence of a 
chemokine, which will diffuse through the gap created between the 
chamber bridge and a glass coverslip. As chemokine diffuses across the 
gap a gradient is formed (see curved arrow). Chemotaxing cells will 
respond to the gradient and migrate along the fibronectin coated coverslip 

towards the well containing IL-8. 
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CHAPTER 3 

RESULTS 

3.1 HL-60 Differentiation 

Due to differences in expression of components used for receptor signal 

transduction, it was important to choose a cell line which closely resembles naturally 

occurring human neutrophils. It is beneficial to study CXCR2 in cells that naturally 

express the receptor and its complementary components, opposed to an 

overexpression system which can take the signaling mechanism out of context. HL-60 

cells differentiated along the granualocytic pathway closely resemble neutrophils in 

many facets and, most importantly, express endogenous CXCR2 [220]. These cells are 

hematopoietic in origin, derived from a patient with acute promyelocytic leukemia, and 

represent a pluripotent lukemic cell line used extensively in laboratory research [221]. 

HL-60 cells are an immense contribution to the study of leukocytes and represent a 

reliable cell line for inflammatory research [222].  

The HL-60 promyelocytes can be differentiated towards neutrophils (the 

granulocyte lineage) with exposure to Me2SO (DMSO) [220]. Once HL-60 cells begin 

differentiation there is an increased expression of various chemokine receptors and 

their G-protein regulators, equating them towards naturally produced neutrophils [223-

226]. These differentiated cells have been used extensively to study G-protein signaling 

and various other neutrophilic and monocytic activities. Differentiated HL-60 cells 

polarize, migrate towards chemoattractants, and detect chemokine gradients 

comparable to human neutrophils isolated from peripheral blood [13, 151]. 
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3.2 Human Neutrophils and dHL-60 Cells 

The NHERF proteins, like many other PDZ proteins, play a role in organization of 

plasma membrane domains, through clustering and anchoring specifically recognized 

motifs of target proteins [90]. PDZ mediated binding of NHERF1 is important at both 

ends of chemotaxing cells and provides multiple points of interaction for PDZ-motif 

containing proteins. CXCR2 possesses a PDZ-motif, suggesting CXCR2 becomes 

anchored to the scaffolding protein similar to SOCs  PLCβ2  or PTEN and PDGFR 

[227].  

Like CXCR2  the PLCβ family contains a type I PDZ-motif at their carboxy 

terminus. The small signaling molecule generators PLCβ1  PLCβ2 and PLCβ3 were 

investigated to determine their expression in dHL-60 cells. PLCβ2 and PLCβ3 are 

important in HL-60 differentiation along the granulocytic pathway, as their nuclear 

localization coincides with differentiation [228]. PLCβ2 is the prominent isoform 

expressed in human neutrophils, and is by and large the major isoform functioning 

during neutrophil chemotaxis, bearing responsibility for IP3 production and [Ca2+] influx, 

while PLCβ3 plays only a small role and PLCβ1 is non-existent [229-231]. If dHL-60 

cells express proteins similar to human neutrophils, the data would be more relevant in 

in vivo models of human inflammation.  

I used a Western blot to assay expression of proteins in dHL-60 cells, Figure 3.1. 

The data shows dHL-60 cells express NHERF1 (A), however NHERF2 (B) is 

undetectable in dHL-60 cells and seems to have a very low level of expression in 

undifferentiated HL-60 cells. PLCβ1 (C) was undetected in dHL-60 cells, which is 

congruent with other findings, and coincides with expression in neutrophils, which only 
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express PLCβ2 and PLCβ3 [232]. Differentiated HL-60 cells express high levels of 

PLCβ2 (D) and low levels of PLCβ3 (E) which also coincide with human neutrophils. As 

expected, dHL-60 cells produce proteins necessary for chemokine signal transduction, 

similar to other leukocytes. 

 

 

 

 

 

 

 

 

Figure 3.1 dHL-60 Expression of NHERF and PLC Isoforms  
All dHL-60 samples contain 30ug of protein lysate, each membrane is 
immunobloted with the appropriate antibody. (A) NHERF1 expression is 
detected and the purified His-S-tagged NHERF1 (N1) protein is used as a 
control. (B) NHERF2 expression is undetected compared to various cancer 
and HL-60 samples, known to express NHERF2, (His-S-tagged NHERF2 was 
undetectable). (C) PLCβ1 expression, undetected, compared to HEK cells 
overexpressing PLCΒ1. (D) PLCβ2 expression in dHL-60 cells compared to 
HEK cells overexpressing PLCβ2, expression is consistent with 
expectations. (E) PLCβ3 expressed at low levels, compared to control 

sample cells known to express PLCβ3.  
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3.3 Biochemical Assay Results 

Due to PDZ-motif presence on CXCR2, initial studies linking CXCR2 and the 

NHERF proteins were carried out, [1] refers to our published article. Through a GST-

tagged pulldown assay we found human CXCR2 overexpressed in HEK293 cells binds 

the scaffolding proteins NHERF1, NHERF2 and slightly to PDZK1 (NHERF3), see 

Figure 3.2 (A). Murine CXCR2 from HEK overexpression (B)  and, isolated from bone 

marrow neutrophils can also be pulled down by NHERF1, but not NHERF2 or NHERF3 

(D). Furthermore, CXCR2 derived from human neutrophil cells preferentially interact 

with NHERF1, and can also bind NHERF2 (C), and this is also observed in CXCR2 from 

dHL-60 cells (E). 
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Figure 3.2 CXCR2 Interacts with NHERF 
CXCR2 preferentially interacts with NHERF1 in neutrophils. (A), HA-tagged human 
CXCR2 (overexpressed in HEK293 cells) was pulled down by PDZ scaffold proteins 
(NHERF1, NHERF2, and PDZK1). The membrane was blotted with anti-HA 
monoclonal antibody. (B), His-S-tagged murine CXCR2 (overexpressed in HEK293 
cells) was pulled down by the indicated PDZ scaffold proteins. The membrane was 
blotted with anti-mouse CXCR2 monoclonal antibody. (C), NHERF1 and NHERF2 
bound to endogenous CXCR2 from human neutrophils. The membrane was 
immunoblotted with anti-human CXCR2 monoclonal antibody. (D), NHERF1 bound 
to endogenous CXCR2 from murine bone marrow neutrophils. Cell lysates of 
HEK293 cells that overexpressed 3HA-murine CXCR2 were loaded as a positive 
control. The membrane was immunoblotted with anti-murine CXCR2 monoclonal 
antibody. (E), NHERF1 and NHERF2 bound to endogenous CXCR2 from neutrophil-
like cells, dHL-60 cells. The membrane was immunoblotted with anti-human CXCR2 

monoclonal antibody. Taken from [1]. 
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 e performed a similar experiment on PLCβ isoforms, Figure 3.3, as they also 

possess C-terminal PDZ-motifs. The direct downstream effector of CXCR2 G-protein 

signaling  PLCβ2 (B)  along with PLCβ1 (A) and PLCβ3 (C) preferentially bind to 

NHERF1 and somewhat with NHERF2. This is shown through a GST-tagged pulldown 

of HEK293 cells overexpressing each PLCβ isoform. Further, data showed PLCβ2 from 

murine bone marrow neutrophils (D) and dHL-60 cells (E) preferentially interact with 

NHERF1. Bearing in mind leukocytes have high levels of PLCβ2 and NHERF1, the 

scaffolding protein NHERF1 was considered to naturally bind both CXCR2 and PLCβ2 

in leukocytes. 
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Figure 3.3 PLCβ Isoforms Interact with NHERF 
PLC-β isoforms physically interact with PDZ scaffold proteins, whereas PLC-β2 
in neutrophils preferentially interacts with NHERF1. A–C, HEK293 cells were 
overexpressed with FLAG-tagged PLC-β1 (A), PLC-β2 (B), and PLC-β3 (C), and 
the GST pulldown assays were performed with PDZ scaffold proteins as 
described under “Experimental Procedures.” The membranes were 
immunoblotted with anti-PLC-β1 (A), PLC-β2 (B), and PLC-β3 (C) monoclonal 
antibodies, respectively. Purified His-S-PLC-β1 (20ng) was loaded as positive 
control for the PLC-β1 antibody (A). D and E, endogenous PLC-β2 from 
neutrophils freshly isolated from mouse bone marrow (D), or from neutrophil-
like cells, dHL-60 cells (E), was pulled down by PDZ scaffold proteins. The 
membranes were immunoblotted with anti-PLC-β2 monoclonal antibody. 
Purified His-S-PLC-β2 was loaded as positive control for the PLC-β2 antibody. 

Image obtained from [1]. 
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We hypothesized the PDZ scaffold proteins, namely NHERF1, would complex 

CXCR2 and PLCβ2 in a PDZ motif-dependent manner, and we were successfully able 

to assemble a complex of CXCR2, PDZ scaffold proteins, and PLCβ2 in vitro, Figure 

3.4. His-S-C-tail derivatives of either CXCR2 or PLCβ2 were pulled down by S-protein 

agarose beads. The complement purified protein (PLCβ2 or CXCR2, respectively) was 

probed for by Western blot. The pulldown of either His-S-CXCR2 C-tail or His-S-PLCβ2 

C-tail can precipitate the entire complex, and NHERF1 seems to be the favored 

scaffolding protein, and is necessary for complex formation. We also observed complex 

formation from murine bone marrow neutrophils endogenous CXCR2 and PLCβ2 

mediated by NHERF1 in vivo. Furthermore we found NHERF1-CXCR2 binding to be 

dose-dependent. 
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Figure 3.4 Macromolecular Complex Formation 
CXCR2, NHERF1, and PLC-β2 form a macromolecular complex in vitro and in 
neutrophils. (A), schematic representation of in vitro macromolecular 
complex assembly (upper panel, refer to “Materials & Methods” for details). 
Macromolecular complex of PLC-β2 C-tail, PDZ scaffold proteins, and human 
full-length CXCR2 (lower panel) are shown. (B), macromolecular complex of 
PLC-β2 full-length, PDZ scaffold proteins, and mouse CXCR2 C-tail. (C), dose-
dependent (GST-NHERF1) macromolecular complex formation of His-S-
tagged PLC-β2 C-tail, GST-NHERF1, and HA-tagged human CXCR2. (D), 
endogenous PLC-β2 and NHERF1 were co-precipitated with CXCR2 from 
murine bone marrow neutrophils. Image taken from [1]. 
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3.4 CXCR2 C-terminal Synthetic Peptide 

Formation of the CXCR2 macromolecular complex can be disrupted by delivery 

of an exogenous biotin conjugated peptide which mimics the last 13 amino acids on the 

C-tail of CXCR2 (biotin-FVGSSSGHTSTTL), thus competing with endogenous CXCR2 

for PDZ-mediated binding of NHERF1. Our lab demonstrated this by a far Western blot, 

which shows increasing amounts of CXCR2 binding to NHERF1, and inclusion of the 

WT CXCR2 C-tail peptide disrupts the interaction, see Figure 3.5. Disruption of the 

CXCR2 macromolecular complex, and CXCR2 dependent downstream activities, was 

accomplished only by CXCR2 C-tail peptides containing the WT (wild type) PDZ motif. 

In either mutation (AAA) or deletion (ΔTTL) variants of the CXCR2 C-terminal peptide 

there was no difference compared to control cells, see [1]. Figure 3.6 illustrates the 

nucleation of the CXCR2 macromolecular complex. 

  

 

 

 

 

 

Figure 3.5 CXCR2 C-tail Peptide 
A CXCR2 C-tail-specific peptide disrupts the physical interaction between NHERF1 
and CXCR2. Binding of His-S-NHERF1 to 3HA-human CXCR2 in the presence of 
human CXCR2 C-tail WT peptide on a Far Western blot. The membrane was 
immunoblotted with HRP-conjugated S-protein, which detects S-tag within His-S-

NHERF1. Image obtained from [1]. 
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3.5 CXCR2 Degradation  

The NHERF1 scaffolding protein is involved in β2 adrenergic receptor (β2AR) 

internalized sorting between the degradative-endocytotic pathway and receptor 

recycling to the plasma membrane. A truncation of β2AR’s PDZ motif prevents NHERF1 

binding, resulting in increased rates of receptor degradation. Furthermore, the 

phosyphorylation of the P-2 serine (β2AR PDZ-motif is DSSL) inhibits NHERF1 PDZ-

β2AR interaction and affects intracellular sorting [233]. Similarly the C-terminal PDZ 

domain of CXCR2 is required for efficient internal sorting of CXCR2, as loss of the PDZ-

motif affects receptor recycling [85]. 

I conducted a CXCR2 degradation assay to determine if the CXCR2 C-tail WT 

peptide would interfere with receptor recycling. If the exogenous peptide affects 

Figure 3.6 NHERF1 Nucleates CXCR2 and PLCβ2 
Diagram depicting PDZ domain interactions of NHERF1 can nucleate 
CXCR2 and PLCβ2 into a macromolecular complex, localizing receptor and 
effector together for greater signaling efficiency. C-terminal PDZ-motifs are 

STTL (CXCR2) and ESRL (PLCβ2). 
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receptor recycling, leading to degradation, CXCR2 stimulation could be greatly 

diminished and could affect functional and migrational data. Degradation was assayed 

by measurement of the total CXCR2 protein amount over a series of time points. As IL-8 

binds to CXCR2 and activates signaling the receptor becomes internalized, see Figure 

3.7. 

Complications arose when trying to assay total cellular membrane protein 

through a western blotting protocol as Western blots are not sensitive enough to small 

shifts in protein amount. This is due in part to antibody binding, which is slightly erratic, 

high levels of background noise, and incomplete transfers of protein to the PVDF 

membrane. This assay was tested five times, and each gave a different outcome. Three 

of the five provided quantifiable results and are displayed in the chart below. Also 

provided is a Western blot image, which demonstrates some of the problems associated 

with this procedure. 

Based on the findings there is no significant change in CXCR2 levels over the 

course of six hours in CXCR2 C-tail WT treated dHL-60 cells, compared to controls. 

This indicates no excessive CXCR2 degradation due to the presence of CXCR2 C-tail 

WT peptide. Further, this assures us that migrational data collected over the two hour 

time period is due to interruption of PDZ domain binding and not a repressed level of 

CXCR2. The CXCR2 degradation data shows a trend line average, which decreases 

slightly as time passes for control and DEL (PDZ-motif truncation) samples, and 

decreases more abruptly in CXCR2 C-tail WT delivered dHL-60 cells.  
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Figure 3.7 CXCR2 Degradation 
Cells are treated at various times with 100ng/ml of IL-8, a Western blot is 
performed, and then probed for CXCR2. (A) Chart depicts trials of three 
Western blot experiments. Average of all three in a given sample are green 
bars, average error bars are based on the standard deviation, and moving 
average is based on the last two average bars. (B) Image of a Western blot 
depicting some problems associated with the experiment and data 
acquisition, notice lower band intensity near the edges and incomplete 

transfer of some bands. 
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3.6 Migration Introduction 

Targeting CXCR2’s PDZ domain  which is four residues long  gave a highly 

specific site to focus on. In functional experiments interruption of the CXCR2 PDZ-

domain, through an exogenous CXCR2 C-tail peptide, affects downstream cellular 

activity, see [1] for functional data. Disruption of complex formation represses CXCR2 

calcium mobilization, a hallmark of PLCβ2 signaling [234]. Also, disrupting the NHERF1 

PDZ-domain interaction with CXCR2 in dHL-60 cells inhibited GROα and IL-8 

chemotaxis during transwell and thansepithelial monolayer migration. However, fMLP 

migration was not disrupted in either assay, as bacterial proteins signal through 

formylated peptide receptors. Following up on our previous paper [1], I further explored 

dHL-60 cell migration to determine how CXCR2 type I PDZ-motif interactions affect 

cellular migration and direction. The aim of my experiment was to characterize the 

phenotypic difference between wild-type control cells and those delivered the CXCR2 

C-tail WT peptide, described previously.  

CXCR2 is distributed around the cell as a transmembrane protein and is bound 

to NHERF1 forming a cytosolic signaling complex, which anchors the CXCR2 complex 

on the cytoskeletal network. Disruption of NHERF1-CXCR2 PDZ-binding could free 

CXCR2 from the cytoskeleton allowing chemokine signaling to be less stationary as 

CXCR2 can laterally diffuse along the membrane. CXCR2’s resulting activity could be a 

considerable distance away, and CXCR2 bound adaptor proteins (LASP-1, VASP, 

IQGAP etc.) could spur actin mobilization in areas separate from the original stimulation 

site. This would lead to a misrepresentation of the intracellular frontness signaling 

against the extracellular IL-8 gradient. Also, if CXCR2 were unable to bind the NHERF1-
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PLCβ2 complex the receptor associated G-proteins would be further away from 

downstream target PLCβ2. Therefore, G-protein signaling would be reduced, which 

could explain the decrease in calcium mobilization observed, and this could further 

hamper migration activities which are Gβγ dependent.  

In the following Zigmond chemotaxis chamber experiment dHL-60 cells were 

used, along with CXCR2 C-tail peptide derivatives, to assess the effects of CXCR2’s 

PDZ interaction during chemotaxis. Six sample types of dHL-60 cells were used, two 

control untreated cell types and four cell types treated with Chariot peptide delivery 

system (with or without CXCR2 C-tail peptides). The two control untreated cell types are 

dHL-60 cells supplied with (dHL+IL8) or without (dHL-IL8) an IL-8 chemokine gradient. 

The positive control dHL+IL8 cells are expected to migrate uniformly towards the source 

of the IL-8 gradient. The negative control dHL-IL8, which are not supplied an IL-8 

gradient, are expected to show no directed movement and move at random.  

All four Chariot treated sample types are supplied with a gradient of IL-8 and 

treated with the Chariot peptide delivery system. The positive control group (CHAR) 

contained no additional CXCR2 C-tail peptide, only the chariot delivery vehicle. Two 

other experimental sample types were delivered either the CXCR2 C-tail WT peptide 

(WT), or the CXCR2 C-tail PDZ-deletion peptide which was missing the three terminal 

PDZ-motif amino acids (DEL). Based on the results of the previous study DEL samples 

should behave similar to controls, whereas WT cells migration should be disrupted.  

The last sample type is identical to the WT samples, delivered with CXCR2 C-tail 

WT peptide and supplied an IL-8 gradient, but were also exposed to an opposing 

gradient of fMLP (WT+fMLP). In this sample the intermediate target IL-8, which signals 
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through CXCR2, should be overlooked for the end target fMLP bacterial derived 

chemoattractant, which signals through FPR [206]. Therefore the CXCR2 C-tail WT 

peptide should have no effect on the fMLP directed migration. This was observed, as 

dHL60 cell function is inhibited by CXCR2 C-tail  T for GROα and IL8  but not fMLP 

[1]. In all relevant sample types the IL-8 gradient was supplied from the downward 

direction and fMLP was supplied from the top. My hypothesis is that the perturbing 

CXCR2’s PDZ-motif binding interaction will disrupt the spatial sensation of a chemokine 

gradient and impair cellular chemotaxis.  

 

3.7 Distance Traveled 

 

 

 

 

Figure 3.8 Distances Defined 
The accumulated distance (Acc) refers to the total length of the path the 
cell took to arrive at its endpoint. Euclidian distance (Euc) refers to the 
distance between the endpoint and the origin, as demonstrated in the 

figure. 
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The data was divided into two portions, the control non-treated dHL-60 cells and 

the dHL-60 cells treated with the Chariot peptide delivery system (Note: Samples 

exposed to fMLP gradients were excluded from either group, as there were too many 

variables compared to controls). The distance data between the two groups seemed 

strikingly different at first glance, see Figure 3.8 and Table 3.1. Non-treated control 

cells moved an average of 126.1um Euclidian distance (Euc) and 883.7um 

Accumulated distance (Acc), while the peptide treated cells moved an average of 

212.4um Euc and 1029.4um Acc. This amounted to only a 16.4% increase in 

accumulated distance but a 68.4% increase in Euclidian distance. Since the 

accumulated distance of all peptide delivered cells seems to be constant (20-30% 

increase compared to dHL+IL8 cells, calculations not shown), the use of the Chariot 

system might stress the cells, which could increase responsiveness through the 

inflammatory/chemotactic response. Therefore the two types of conditions were 

separated to analyze the distance data appropriately.  
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Taking into account the non-peptide delivered control samples, see Table 3.2, 

the accumulated distance is fairly similar with dHL-IL8 cells having ~14.6% more Acc 

compared to dHL+IL8. But when Euclidian distance is considered, dHL-IL8 cells have 

79.4% (20.6% less) Euclidian distance traveled than their counterparts, dHL+IL8 cells. 

The Euclidian data is what is generally to be expected, as the negative control should 

move in a less directional manner. Even though the dHL-IL8 Euclidian distance 

decreased by only 20.6% the accumulated distance travelled by dHL-IL8 is 14.6% 

greater, which makes it is safe to assume that if both cell types had travelled the same 

Table 3.1 Distances Traveled 
Distances of non-treated Control samples Vs. Peptide treated samples 
This chart portrays the accumulated and Euclidian distances for the two 
groups, highlighting the differences in distance between treated and non-
treated samples. 
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total accumulated distance the dHL-IL8 Euc deficit would be even greater. This is 

evident when we take the directness (D= Euclidian/Accumulated distance) of the two, 

Table 3.3. dHL+IL8 has a D=17.1% and dHL-IL8 has a D=11.8%. Comparing the two, 

dHL-IL8 has only 69.3% of dHL+IL8’s directness (a 30.7% decrease). Therefore, dHL-

IL8 cells would have about ~30% less Euc corrected-distance than dHL+IL8 cells, which 

is expected, given the dHL-IL8 sample has no chemokine gradient to migrate towards 

but will still move randomly. 

Looking at the group of Chariot-peptide delivered cells we see accumulated 

distance compared to positive control CHAR is fairly similar, with DEL and WT samples 

having a slight increase of 9.2% and 1.2% Acc distance, respectively, Table 3.2. 

Euclidian distance shows DEL cells have 8.1% increase compared to CHAR, which 

correlates closely to their 9.2% increase of Acc distance. Compared to CHAR, WT 

samples show a 29.3% decrease in Euc distance, and comparing that with their 1.2% 

increase in Acc gives an account similar to the D=30% decrease witnessed by dHL-IL8 

vs. dHL+IL8. WT+fMLP group Acc is only 0.4% greater than positive control CHAR, yet 

the Euc distance is increased 25.7%, which is significantly higher than the similarly 

treated WT sample. 
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Comparing the directness to positive control CHAR, DEL has a D=98.9%, almost 

identical, showing CXCR2 C-tail DEL-peptide has no substantial influence on migratory 

directness, Table 3.3. WT has a D=69.8% compared to CHAR (30.2% decrease), which 

is almost identical to the dHL-IL8 vs. dHL+IL8 data (30.7% decrease). WT+fMLP 

Table 3.2 Distances Traveled Vs. Controls 
Table depicts total accumulated and Euclidian distances for each sample 
type. A comparison of negative control (dHL-IL8) or experimental samples 
(DEL, WT, WT+fMLP) with their positive controls (dHL+IL8, CHAR) for each 

group, respectively. 
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displays a high directness, D= 28.8%, and is 24.9% greater than CHAR samples. This is 

most likely due to fMLP being an end target chemoattractant and stimulating a stronger 

response in the neutrophil-like cells. This data demonstrates an endogenous CXCR2 

PDZ-motif peptide disrupts directness of migration towards IL-8, a host produced 

chemoattractant which signals through CXCR2, but does not disrupt directness of 

migration towards bacterial derived chemoattractants.  

 

 

 

 

3.8 Directness  

Directness (D) is the quotient of Euclidian distance over the accumulated 

distance (D=Euc/Acc). The samples directness through time is the average directness 

of each cell in a sample at every time-point. Note: Directness is not a comparison of 

compass direction; it is a comparison of distances travelled, the more direct (D=1) the 

Table 3.3 Directness  
Directness of each experimental sample, based on total distance traveled, 
compared to its positive control. The greater the directness, the more 

linear (less random) the motion in a given direction.  
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straighter the path, the less direct (D=0) the more random the path. A cell chemotaxing 

towards a gradient should display a higher directness than a cell migrating randomly.  

Assessing the average directness requires distance data, thus the samples were 

again divided, due to differences previously mentioned. Disregarding the WT+fMLP 

sample for a moment, Figure 3.9 shows the control CHAR and DEL samples have the 

highest overall directness towards IL-8, and are the two most direct moving sample 

types with a D=0.25 and 0.22, respectively. The third most direct moving cell type was 

the control dHL+IL8, D=0.19. WT cells started out with a high directness, but gradually 

decreased, finishing at D=0.17, and the dHL-IL8 had the least direct movement, which 

is expected from the negative control, D=0.13.  

 
Figure 3.9 Directness Vs. Time 
Average directness of each experimental sample throughout the 120 
minute experiment. End target fMLP directed samples have the highest 
overall directness, followed by positive controls, and negative control dHL-
IL8 have the lowest overall directness. 
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Parallels can be drawn between the differences in directness of the two groups of 

cells. dHL+IL8 has a higher end-value directness than the dHL-IL8 control (difference of 

0.06), similarly CHAR has a higher directness than the WT sample (difference of 0.08), 

while CHAR and DEL samples display more similar values (difference of 0.03). 

Furthermore, WT+fMLP cells have the highest directed movement, compared to WT 

there is a difference of 0.10, and only fMLP to account for the difference. An explanation 

of the extremely high rate of directness in the beginning of the experiment might come 

from the way in which directness is calculated; as time passes each cell has a greater 

opportunity to turn, thereby changing the endpoint, and affecting the Euclidian distance, 

but accumulated distance is always increasing. This is doubly true if the cell makes a U-

turn and decreases its Euclidian distance while increasing the accumulated distance. 

Since only moving cells were counted, and most move relatively straight for short 

periods of time, their original few motions would have yielded high directness, until 

turns, random movement, or directed migration patterns take over.  

The difference in directed movement is evident when averaging the directness of 

each group Table 3.4. The average percent directness of negative control dHL-IL8 

compared to positive control dHL+IL8 is ~68%. Average directness of DEL or WT 

compared to CHAR is ~89% and ~68% respectively. This is evidence that dHL-60 cells 

in the presence of an IL-8 chemokine gradient simultaneously treated with a CXCR2 C-

tail WT peptide migrate in a directed manner similar to negative control cells in no such 

IL-8 gradient. Furthermore, the DEL treated cells lacking a competitive exogenous PDZ-

motif migrate similar to normal positive controls, and addition of an end target fMLP 
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gradient restores directional migration in WT samples (WT+fMLP directness is 11.0% 

greater than CHAR positive control). 

 

 

 

 

 

3.9 Forward Migration Index  

Forward migration index (FMI) is the distance travelled in a single plane, either 

vertical (Y-axis) or horizontal (X-axis), see Figure 3.10. Where directness measured the 

efficiency of migration without direction, FMIs measure the distance travelled either 

horizontally or vertically from the origin. If a gradient is applied in one plane it’s average 

forward migration towards or away from the source would give an account of the 

sources attractive or repelling characteristics. An average migration in the other plane, 

without a gradient, should be near zero because there are no attractive or repulsive 

influences in said plane. If no gradient is established the average forward migration in 

Table 3.4 Average Directness 
Average directness of all cells in a given sample. The directness is 
compared to the positive controls, parallels can be drawn between the 

negative control dHL-IL8 and WT treated samples. 
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both planes should be around zero, as average migration patterns should even out in an 

adequate sample size. As you can see from Figure 3.11 the cells averaged 0.05 units 

or less in horizontal movement from the origin. Since the IL-8 (or fMLP) gradient was 

supplied vertically, seeing little horizontal movement is expected.  

 

 

 

 

The Y-axis FMI is similar in dHL+IL8 and CHAR positive controls, which moved 

down (negative Y-value) towards the source of IL-8, as did DEL samples. The only two 

samples that did not have significant vertical movement were dHL-IL8 and WT cells, 

see Table 3.5 and Figure 3.11. WT actually moved away from the gradient source, 

whereas dHL-IL8 cells movement is completely random. Following the hypothesis, if WT 

chemokine gradient sensation is disrupted then cells should exhibit more “random” 

Figure 3.10 Forward Migration Indexes Defined 
Schematic diagram showing the Forward Migration Index (FMI). FMI’s are 
only observed on the X or Y axis. It measures how far horizontal or vertical 

a cell has moved from the origin, as depicted by the green or red lines. 
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motion compared to a direct one observed by the positive controls. Randomness in WT 

samples, or absence of gradient in dHL-IL8 samples, is observed by noting that they 

average almost no horizontal or vertical FMI (less than 0.02UNITS).Though, forward 

migration was rescued in WT cells exposed to a fMLP gradient, as WT+fMLP samples 

moved significantly towards the source of bacterial chemoattractant. 

 

 

 

 

 

 

 

 

Figure 3.11 Average FMI’s  
Representation of each samples average FMI’s plotted on a graph. Average 
downward migration correlates to IL-8 mediated chemotaxis, upward 
migration is towards fMLP. There is no gradient on the X-axis plane, 

therefore total X-FMI should be minimal. 

Table 3.5 Endpoint FMI’s  
Endpoint X and Y-FMI of each sample, negative Y-values correlate to IL-8 
mediated chemotaxis, positive Y-values correlate to fMLP mediated 

migration.  
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3.10 FMI Through Time 

Looking at an average of each sample we can track the X-axis and Y-axis FMI 

through time. These are displayed in Figure 3.12 and Figure 3.13. In each case the 

opposite axis displays the time, each point plotted corresponds to 30sec and all 240 

time-points total the two hours the experiment was executed. Considerations should be 

made for the time it takes to establish a gradient, and the length at which the gradient is 

effective before homogeneity. As previously stated, a vertical chemoattractant gradient 

should cause the dHL-60 cells to move downward towards IL-8 (or upwards for fMLP) 

and have no overall effect on the X-FMI. Likewise dHL-60 cells exposed to no 

chemokine gradient should have little X or Y-axis FMI.  

X-axis FMI, Figure 3.12, shows cells migrate to the left (negative X values) early 

on, this is probably due to the side of the well the chemoattractants were added, when 

the gradient is being formed. By roughly 20min most samples have tracked back to a 

zero X-value, which it should theoretically have been from the onset, but does 

demonstrate their sensitive perception of chemoattractants. Once the gradient is 

established (roughly 20-30min) the cells do not travel far horizontally for the remainder 

of the experiment. 

The Y-axis FMI, seen in Figure 3.13, shows positive controls dHL+IL8 and 

CHAR moving towards the negative Y-values through time. DEL cells behave similar to 

the CHAR positive control with regard to an almost identical Y-axis FMI. dHL-IL8 and 

WT cells stay relatively close to the Y axis (Y=0), which stated before, is expected in a 

population of cells with random migration patterns. Although WT cells were provided an 

IL-8 gradient they behaved strikingly similar to negative control dHL-IL8 cells. Once 
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again we see forward migration can be rescued in WT cells by inclusion of a fMLP 

gradient. This data directly supports the hypothesis, and points to a PDZ-motif 

dependent disruption of CXCR2 chemokine-directed migration, which is undetected in 

DEL samples, and rescued by an end target chemoattractant. 

 

 
Figure 3.12 X-FMI Vs. Time 
Each samples average X-FMI throughout the experiment. A strong pull 
towards the left is initially observed as the gradient is being formed over 

the first 20-30min. Gradients are depicted vertically. 
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3.11 Sector Maximum 

Endpoints of each tracked cell are plotted along the X,Y axis. The sector 

maximum is the direction (in degrees) in which the maximum number of endpoints falls 

within a 60˚ interior angle. For all theoretical purposes any attractant gradient situated 

along an axis should have a maximum sector at or near the angle value associated with 

that direction. The counts inside and outside of the given 60˚ sector are given in the plot 

along with the angle of greatest value.  

Figure 3.13 Y-FMI Vs. Time 
Depicts each samples average Y-FMI throughout the experiment. Samples 
should move towards their respected targets and random migration of the 
negative control should be maintained near zero. Origins of the gradients 

are depicted vertically. 
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Sector maximum plots are shown in Figure 3.14. dHL+IL8 have a maximum 

sector angle of 265˚, which is congruent with expectations of a gradient source situated 

directly down. That trend is also observed in the CHAR cells which have a maximum 

sector angle of 269˚. DEL samples are similar to the two positive controls with a sector 

maximum angle of 279˚. This alludes to the fact that DEL cells distribute nearly identical 

to controls when exposed to a chemokine gradient. dHL-IL8 on the other hand shows 

no such congruence to positive controls, which should be expected in a gradient 

deficient control group. The dHL-IL8 sector maximum is 44˚, which coincides with dHL-

IL8 having a high presence of endpoints in the first quadrant.  

WT cells also experienced a sector maximum angle in the first quadrant. The WT 

maximum sector angle is 78˚, almost 180˚ opposite the gradient supplied. Because the 

WT cells were exposed to the same gradient as the positive controls it must be 

concluded that the CXCR2 C-tail WT-peptide disrupted the directional sensation of IL-8. 

CXCR2 signal disruption caused WT samples to move randomly, similar to negative 

control dHL-IL8. The sector maximum for WT+fMLP samples is 98˚, which coincides 

with their fMLP gradient situated straight up, away from the IL-8 source, demonstrating 

that CXCR2 C-tail WT peptide does not disrupt fMLP migration in dHL-60 cells. 
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Figure 3.14 Sector Maximum 
Green vectors identify the sector maximum, a 60˚ angle. Counts inside and 
outside of the vector, along with the angular degree are given in each plot. 
Cells that end in negative Y-values are red, positive Y-values are black, and 

the center of mass is depicted as a blue (+).  
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3.12 Rose Diagram 

The chemotaxis tool in ImageJ supplies a variety of tools to visualize migration 

data. One diagram that is easily interpreted is the rose diagram, see Figure 3.15. In this 

assessment the migration endpoints are used in a quantitative manner to analyze 

overall directional movement in a 360˚ circle. The diagram is comprised of individual 

vectors placed every 10˚, 36 vectors total. Each vectors size is equal to the quantity of 

endpoints in that vectors particular range. The total range for each vector is 30˚. This 

means each vector’s size comprises of the endpoints within +/- 10˚ either side of the 

vector.  

Positive control samples dHL+IL8 and CHAR show their biggest vectors pointing 

downward along the Y-axis, towards the source of IL-8 and higher gradient 

concentration. The rose diagram for DEL cells looks almost identical to the CHAR cells 

and also points directly downward. dHL-IL8 has the highest vector values in the first 

quadrant between 0˚ and 90˚, since there was no gradient or chemokine applied to the 

dHL-IL8 samples it is assumed they would migrate randomly and form a pseudo circle 

around the origin, which is roughly represented. The WT samples also move in a similar 

way, forming a pseudo circle around the origin. The first three quadrants account for a 

majority but the overall shape is analogous to the negative control (dHL-IL8). The 

WT+fMLP rose diagram points straight up showing the WT+fMLP sample moved toward 

fMLP in a directed manner.  
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Figure 3.15 Rose Diagrams 
An easy to interpret diagram of each samples endpoint distribution. Each 
vector spans a 10˚ angle and comprise of endpoints within a 30˚ angle (+/- 
10˚ on either side). Vector size represents the total number of endpoints 

within each 30˚ range. 
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3.13 Center of Mass 

The center of mass (COM) shows an average of the cells positions in a given 

sample throughout the 120 minute experiment, Figure 3.16. Direction and distance 

have a factor in determining the center of mass. This data provides an excellent account 

of the average pattern in which samples migrated. The center of mass resembles the 

average FMI values of each sample and the FMIs observed through time. It also 

correlates well with the rose diagram and sector maximums.  

 

 

 

Figure 3.16 Center of Mass Vs. Time 
Average center of mass of each sample can be used to determine the 
majority of cell movement in a given sample. The COM is depicted by a 

path corresponding to each sample throughout the experiment.  
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Positive controls moved similarly, dHL+IL8 and CHAR COMs moved toward the 

higher IL-8 gradient, 51.8um and 127.4um respectively, and strayed little from the Y-

axis, 7.57˚ and 4.95˚ respectively, Table 3.6. DEL sample’s COM moved very similar to 

the positive control types, 143.67um, and only strayed 2.2˚ from the Y-axis, which 

shows a strong COM movement toward IL-8. dHL-IL8 sample COM moved away from 

the origin at a 46.24˚ angle, and migrated only 18.12um total. The dHL-IL8 COM data 

indicates no chemoattractant gradient was formed, as there would be planar movement 

in a unilateral manner. Instead dHL-IL8 moved a negligible distance in both X and Y 

planes. 

WT cells COM most closely resemble dHL-IL8 negative control, moving a total of 

24.22um and 20.4˚ off the Y-axis. Although the WT sample’s COM moves almost three 

times further vertically than horizontally, the vertical distance is minor compared to 

Table 3.6 COM Distance From Origin 
Each samples COM distance from the origin and degree deviation from the 
Y-axis. Angles were calculated using the COM end point and basic 

trigonometry: Sin() = Opposite / Hypotenuse, Cos() = Adjacent / 

Hypotenuse, Tan() = Opposite / Adjacent, distances are calculated “as the 

crow flies” by the same trigonometric equations.  
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positive controls. Furthermore, the direction of WT’s COM is almost exactly opposite the 

IL-8 gradient supplied. Lastly, the WT+fMLP samples COM moved significantly upward 

263.39um, and only 11.86˚ off the Y axis, showing the strongest collective movement 

toward a chemokine of any sample. 

 

3.14 Rayleigh Test  

The Rayleigh test is a statistical test for determining if a circular distribution of 

objects is random or uniform. With p-values >0.05 the null hypothesis (uniformity of 

direction) is rejected. The Rayleigh test is strongly dependent on the number of samples 

(n) being analyzed in a group, and the Rayleigh test for vector data also incorporates 

the distance from the origin, see Table 3.7. The Rayleigh test can be used in 

conjunction with a rose diagram (or the sector maximum for an angular value) to give 

direction to statistically relevant data of each group.  

Rayleigh test for dHL+IL8 positive control samples shows that they migrated in a 

uniformly directional manner p=3.72E-04, coupled with the sector maximum (265˚) this 

data statistically demonstrates that dHL+IL8 uniformly responded to the chemokine 

gradient. CHAR positive control sampled cells also show a uniform distribution, 

p=2.44E-06. Again, by using the statistical data and an angle measure of the sector 

maximum (269˚), we can come to the conclusion that CHAR cells uniformly responded 

to the IL-8 gradient. DEL cells have the lowest p-value of the IL-8 treated groups, 

p=4.40E-10, which indicates they distributed in an exceedingly uniform manner. The low 

DEL p-value is partly due to the higher sample size and congruency of distribution. The 



www.manaraa.com

69 

 

DEL p-value and sector maximum angle (279˚) also concludes that DEL samples 

distribute uniformly to the IL-8 chemokine gradient.  

On the other hand dHL-IL8 cells have the highest p-value, p=0.160, which 

assures us that the negative control dHL-60 cells are distributed in a random manner. 

This is the expected outcome from cells lacking a gradient to chemotax towards and 

assures the previously stated negative-control data is relevant statistically, i.e., the data 

is random. WT samples also demonstrate random migration, p=0.153. This indicates 

the sector maximum data, or any other data for that matter, is not relevant in statistically 

determining which direction the WT sample would migrate. But, when WT treated 

samples are exposed to fMLP uniform distribution is rescued, p=1.436E-28. Taking the 

sector maximum data into account, WT+fMLP samples moved in a statistically relevant, 

highly uniform, manner towards their end target chemoattractant.  

 

 

 

 

 

 

Table 3.7 Rayleigh Test 
Displays each samples number of cells (n), and statistical p-value for the 
Rayleigh test and Rayleigh test for vector data (from the chemotaxis tool 
ImageJ plugin). A p-value of >0.05 corresponds to random distribution, 

whereas a p-value <0.05 corresponds to uniformity.  
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CHAPTER 4 

DISCUSSION 

 

4.1 Conclusion of Biochemical Data  

The data presented in Figures 3.4 and 3.5 were collected through my advisors 

laboratory with only partial contribution from me. I added this data into the results 

section to convey the graduation of experiments and knowledge in a comprehensive 

format. I do not take credit for their work.  

Assessment of protein expression in differentiated HL-60 cells was important, as 

they can be directly compared to naturally derived neutrophils. Determining NHERF 

expression in dHL-60 cells is significant since NHERF2 competes with NHERF1 for 

binding of CXCR2 and PLCβ2’s PDZ-motifs. Western blot data shows NHERF1 is the 

primary isoform expressed in dHL-60 cells and NHERF2, was not detected in dHL-60 

cells. This rules out possible binding of CXCR2’s or PLCβ2’s PDZ-motifs by 

endogenous NHERF2, which if expressed at exceedingly high rates could compete for 

PDZ-motif binding sites with NHERF1. Western blotting also found PLCβ1 is absent in 

dHL-60 cells, PLCβ2 is the main isoform expressed in dHL-60 cells, and PLCβ3 is 

expressed at a much reduced level. This data is consistent with observations of human 

neutrophils, which use PLCβ2 as the major isoform in chemokine signaling, and have 

minor activity from PLCβ3 [229-231]. NHERF2 interacts specifically with PLCβ3 and 

both of these proteins are expressed at extremely low levels in dHL-60 cells [235]. 

Therefore it can be postulated that NHERF2 or PLCβ3 do not play a significant role in 

CXCR2 signaling. This data confirms proteins involved in CXCR2 scaffolding and 
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signaling, namely NHERF1 and PLCβ2, are similar in dHL-60 cells and human 

neutrophils, as expected.  

Through a GST-tagged scaffolding protein pulldown we demonstrated human 

and murine CXCR2 and PLCβs all bind to NHERF proteins, though this interaction is 

mainly facilitated by NHERF1. By using His-S-tagged C-tails of both CXCR2 and PLCβ2 

we found a CXCR2 macromolecular complex can be formed consisting of CXCR2, 

NHERF1 and PLCβ2. Using purified proteins meant the complex formation is 

independent of other cytosolic factors and we further exemplified this by pairwise 

binding between CXCR2 and NHERF1. Also CXCR2 macromolecular complex was 

found in vivo from isolated mouse bone marrow neutrophils. Lastly, to interrupt the PDZ-

mediated binding of this complex a synthetic peptide, which replicates the last 13 

residues of CXCR2, was produced. This PDZ-motif containing peptide inhibits complex 

formation, as seen in the far Western blot, by competing with endogenous CXCR2. 

Further studies linked PDZ disruption to suppression in CXCR2 functional activity, such 

as calcium mobilization and transepithelial migration [1].  

The CXCR2 degradation experiment showed no significant data. What can be 

inferred is the total amount of CXCR2 is not diminished to undetectable levels. This in of 

itself is somewhat valuable as CXCR2 must be available for signaling activity and 

migrational data is not corrupted due to an excessive lack of chemokine receptor. 

Based on the average trend line data, it seems plausible that a CXCR2 C-tail WT 

peptide could interfere with receptor recycling and increase degradation, however, 

Western blotting is an inappropriate assay to determine this. If this experiment should 

be conducted again, FACS (fluorescence activated cell sorting) should be considered. 
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This method would employ a highly sensitive flow cytometer to measure cell surface 

CXCR2 levels through a fluorescence conjugated antibody. 

In conclusion, dHL-60 cells represent viable alternatives for human neutrophils in 

the context of CXCR2  NHERF proteins and PLCβ isoforms. CXCR2 and PLCβ2 both 

interact with NHERF1 through a PDZ dependent interaction and together they form a 

macromolecular complex. This complex links CXCR2 and its downstream effector 

PLCβ2 through the actin binding scaffolding protein NHERF1. Furthermore, an 

exogenous CXCR2 C-tail synthetic peptide can disrupt the complex formation and 

repress CXCR2 functioning [1]. This peptide might also disrupt intracellular sorting of 

CXCR2, although more clarification is needed.  

 

4.2 Conclusion of Migrational Data 

Accumulated distances suggest that both dHL-IL8 and WT samples migrated 

analogous to positive controls, yet their directness was roughly 30% less. The WT 

samples were exposed to a 50ng/ml gradient of IL-8, whereas dHL-IL8 experienced no 

such gradient. The DEL samples directed their migration similar to the positive controls 

and the only difference between DEL and WT samples is the inclusion of a synthetic 

CXCR2 type I PDZ-motif. Furthermore, migrational directness was reestablished when 

WT samples were exposed to a fMLP gradient. Therefore, it can be inferred the 

exogenous PDZ-motif is responsible for the disruption of IL-8 mediated directness of 

migration. Disrupting CXCR2 PDZ-domain interactions caused dHL-60 cells exposed to 

an IL-8 gradient to direct migration similar to dHL-60 cells experiencing no IL-8 gradient. 
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The forward migration index assays the movement on the X or Y-axis. As 

expected, the control samples and WT+fMLP all have significant Y-axis FMI’s. Negative 

control dHL-IL8 has little X or Y-axis FMI and this display of random movement is also 

observed in WT samples. The FMI data supports the hypothesis that the WT sample 

seems unable to recognize the direction of a gradient. DEL samples enforce the 

importance of PDZ binding disruption and confirm forward migration is not disrupted 

with the inclusion of a CXCR2 C-tail peptide lacking the PDZ-motif. Data from the sector 

max, rose diagram and center of mass further exemplify the contrast between DEL and 

WT samples. Data shows general distribution of dHL+IL8, CHAR and DEL samples 

towards the chemokine gradient, with the greatest abundance along the negative Y-

axis. Meanwhile dHL-IL8 and WT samples show a high degree of random movement 

and are evenly dispersed around the origin. Yet, inclusion of a fMLP gradient restored 

normal distribution in the WT samples, due to fMLP signaling through FPR, not CXCR2.  

The Rayleigh test statistically confirms these findings. DEL samples distribute 

uniformly to the IL-8 gradient, akin to positive controls. WT samples, like negative 

control dHL-IL8, do not distribute uniformly and exhibit statistically random migration. 

Importantly, exposure to fMLP rescues directional chemotaxis in WT treated cells. It is 

worthwhile to note that the WT accumulated distance was comparable to the positive 

controls and DEL or WT+fMLP directed migration was not disrupted. This establishes 

that CXCR2’s PDZ-motif interaction, however important in chemokine directional 

sensation, does not play a key role in moving the cell forward. But, whether or not 

disrupting CXCR2 nucleation into a macromolecular complex affects anchoring of 

CXCR2/actin modulating proteins (Arp2/3, VASP, LASP-1, IQGAP, etc.), sustaining the 
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leading edge, or possibly disrupts other PDZ interactions (NHERF2-PTEN), has yet to 

be determined. 

In summary, Zigmond chemotaxis chamber migrational data confirms significant 

differences between the two experimental samples. dHL-60 cells migrated as expected 

and delivery of the CXCR2 C-tail peptide containing the PDZ-motif severely repressed 

IL-8-mediated chemotactic migration. Also, the CXCR2 C-tail peptide lacking the PDZ 

motif had no effect on overall migration, which rules out residues in the CXCR2 C-tail 

peptide affecting chemotaxis. Therefore, it can be concluded that PDZ motif-domain 

interactions play an important role in directing dHL-60 cells during CXCR2/IL-8-

mediated chemotaxis, and disruption of PDZ-mediated CXCR2 macromolecular 

complex formation abolishes spatial sensation in a chemokine gradient. The data 

collected from the Zigmond chemotaxis chamber verifies the hypothesis, that perturbing 

CXCR2’s PDZ-motif binding interaction will disrupt spatial sensation of the chemokine 

gradient and impair cellular chemotaxis, is correct. 

 

4.3 Thoughts  

Excessive infiltration of neutrophils is the cause of many inflammatory diseases 

[17]. As neutrophils infiltrate into tissue the surrounding area is subjected to a variety of 

proteolytic enzymes and reactive oxygen species deployed by neutrophils to combat 

infection, which causes extensive tissue damage and delays wound healing [236, 237]. 

Yet their role in bacterial clearance remains imperative to host pathological defense 

[238]. When searching for a therapeutic approach to combat auto-inflammatory disease 
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a balance must be reached, in order to provide anti-inflammatory relief, without 

compromising a legitimate immune response.  

Some therapeutic methods (neutralizing antibodies or small organic compounds) 

utilize an extracellular antagonist of CXCR2 to allosterically or competitively disrupt 

chemokine binding [239]. In either case, the effect is a complete inhibition of the CXCR2 

signaling cascade and buildup of IL-8, which cannot be scavenged by receptors [240]. A 

systemic shutdown of CXCR2 would suppress the hosts ability to initiate an immune 

response, induce angiogenesis of endothelial cells, or begin wound healing after injury 

[241]. The data presented in our recent report [1] and this report target a specific 

peptide motif in the cytosol and represents a novel strategy to disrupt CXCR2 mediated 

signaling without complete blockade of the signaling system. Disruption of CXCR2-PDZ 

domain interaction still allows IL-8 binding, receptor internalization, and a diminished 

chemokine response [1]. Yet, chemotaxis towards host derived inflammatory 

chemokines becomes impaired, leaving the cells unable to spatially detect a gradient, 

while chemotaxis towards bacterial peptides (fMLP) remains normal.  

Tissue damage caused by sterile injury exhibits damage associated molecular 

patterns (DAMPS), derived from human mitochondria, which attract neutrophils through 

formylated peptide receptors [242]. Additionally, a study of CXCR2-/- mice showed they 

have no impairment in clearance of bacteria, as mouse neutrophils could utilize other 

means to reach their targets [243]. This represents evidence for CXCR2-PDZ disruption 

not interfering in sterile injury or bacterial related inflammatory responses, while 

providing a therapeutic target for chronic/hyper inflammatory diseases derived from 

excessive chemokine production.  



www.manaraa.com

76 

 

 

4.4 Future Directions 

The goal of disease associated research is to understand the mechanisms 

involved, and use this knowledge for therapeutic development. One major facet of 

developing therapeutics should focus on the consequences of globally or locally 

disrupting CXCR2’s PDZ-motif interaction. This would hinge on the discovery of a drug 

or soluble molecule to disrupt CXCR2 cytosolic PDZ-motif interactions, replicating the 

effects of the CXCR2 C-tail WT peptide used. Drug discovery is by no means an easy 

task and may not become feasible or fruitful but, if such a compound exists, could prove 

beneficial in research of autoimmune diseases. Although there is no account of the 

effects PDZ-domain disruption would cause in other areas of the body, as PDZ domains 

occur frequently and their disruption could pose problems in distal locations. 

Therefore, in vivo experimentation should be considered an obtainable goal. 

Murine air-pouch models or those mimicking human inflammatory diseases should be 

assessed for viability and executed. This would require genetically modified mice (or 

another animal model), with mutation of the CXCR2 PDZ-motif. Although, truncation of 

CXCR2 PDZ-motif is not identical to a soluble drug, any in vivo results should be more 

in line with actual biological systems. By cytosolically targeting CXCR2’s 

macromolecular complex formation, new therapies can be developed, opening the door 

to innovative opportunities in similar systems. 
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Neutrophils are the body’s first responders to inflammation  being the most 

abundant white blood cell type in circulation and they quickly initiate an immune 

response through chemokine signaling. Inflammatory chemokines signal via their 

receptor CXCR2, which initiates an inflammatory response, recruiting leukocytes to 

sites of inflammation. Chemokine signaling is important for proper host protection, yet 

uncontrolled activity is responsible for a variety of pathological conditions: including 

rheumatoid arthritis, ischemia-reperfusion injury, arteriosclerosis, multiple sclerosis, 

psoriasis, inflammatory bowel disease, and allergic reactions.  

In this report I show a CXCR2 macromolecular signaling complex exists in 

neutrophils  containing NHERF1 and PLCβ2. I also demonstrate a novel strategy of 

cytosolically perturbing the CXCR2 PDZ-domain interaction of the macromolecular 

complex. This perturbation disrupts spatial sensation of a chemokine gradient, yet still 

allows cells to mobilize actin and chemotax. Furthermore, I show CXCR2 PDZ-domain 

perturbation does not disrupt migration through bacterial derived chemoattractant 

receptors.  
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